Prostate cancer is classified as an adenocarcinoma, or glandular cancer, that begins when normal semen-secreting prostate gland cells mutate into cancer cells. The region of prostate gland where the adenocarcinoma is most common is the peripheral zone. Initially, small clumps of cancer cells remain confined to otherwise normal prostate glands, a condition known as carcinoma in situ or prostatic intraepithelial neoplasia (PIN). Although there is no proof that PIN is a cancer precursor, it is closely associated with cancer. Over time, these cancer cells begin to multiply and spread to the surrounding prostate tissue (the stroma) forming a tumor. Eventually, the tumor may grow large enough to invade nearby organs such as the seminal vesicles or the rectum, or the tumor cells may develop the ability to travel in the bloodstream and lymphatic system. Prostate cancer is considered a malignant tumor because it is a mass of cells that can invade other parts of the body. This invasion of other organs is called metastasis. Prostate cancer most commonly metastasizes to the bones, lymph nodes, and may invade rectum, bladder and lower ureters after local progression. The route of metastasis to bone is thought to be venous as the prostatic venous plexus draining the prostate connects with the vertebral veins.

The prostate is a zinc accumulating, citrate producing organ. The protein ZIP1 is responsible for the active transport of zinc into prostate cells. One of zinc's important roles is to change the metabolism of the cell in order to produce citrate, an important component of semen. The process of zinc accumulation, alteration of metabolism, and citrate production is energy inefficient, and prostate cells sacrifice enormous amounts of energy (ATP) in order to accomplish this task. Prostate cancer cells are generally devoid of zinc. This allows prostate cancer cells to save energy not making citrate, and utilize the new abundance of energy to grow and spread. The absence of zinc is thought to occur via a silencing of the gene that produces the transporter protein ZIP1. ZIP1 is now called a tumor suppressor gene product for the gene SLC39A1. The cause of the epigenetic silencing is unknown. Strategies which transport zinc into transformed prostate cells effectively eliminate these cells in animals. Zinc inhibits NF-κB pathways, is anti-proliferative, and induces apoptosis in abnormal cells. Unfortunately, oral ingestion of zinc is ineffective since high concentrations of zinc into prostate cells is not possible without the active transporter, ZIP1.

RUNX2 is a transcription factor that prevents cancer cells from undergoing apoptosis thereby contributing to the development of prostate cancer.

The PI3k/Akt signaling cascade works with the transforming growth factor beta/SMAD signaling cascade to ensure prostate cancer cell survival and protection against apoptosis. X-linked inhibitor of apoptosis (XIAP) is hypothesized to promote prostate cancer cell survival and growth and is a target of research because if this inhibitor can be shut down then the apoptosis cascade can carry on its function in preventing cancer cell proliferation. Macrophage inhibitory cytokine-1 (MIC-1) stimulates the focal adhesion kinase (FAK) signaling pathway which leads to prostate cancer cell growth and survival.

The androgen receptor helps prostate cancer cells to survive and is a target for many anti cancer research studies; so far, inhibiting the androgen receptor has only proven to be effective in mouse studies. Prostate specific membrane antigen (PSMA) stimulates the development of prostate cancer by increasing folate levels for the cancer cells to use to survive and grow; PSMA increases available folates for use by hydrolyzing glutamated folates.

Early Detection and Diagnosis

The American Cancer Society's position regarding early detection is "Research has not yet proven that the potential benefits of testing outweigh the harms of testing and treatment. The American Cancer Society believes that men should not be tested without learning about what we know and don’t know about the risks and possible benefits of testing and treatment. Starting at age 50, (45 if African American or brother or father suffered from condition before age 65) talk to your doctor about the pros and cons of testing so you can decide if testing is the right choice for you."

The only test that can fully confirm the diagnosis of prostate cancer is a biopsy, the removal of small pieces of the prostate for microscopic examination. However, prior to a biopsy, less invasive testing can be conducted.

According to Professor Hardev Pandha, The Prostate Project Chair of Urological Oncology at the University of Surrey's Postgraduate Medical School, a non-invasive test looking for the presence of the protein Engrailed-2 (EN2) in the urine to be more reliable and accurate than existing tests.

"In this study, we showed that the new test was twice as good at finding prostate cancer as the standard PSA test. Only rarely did we find EN2 in the urine of men who were cancer free, so if we find EN2 we can be reasonably sure that a man has prostate cancer. EN2 was not detected in men with non-cancer disorders of the prostate such as prostatitis or benign enlargement. These conditions often cause a high PSA result, causing considerable stress for the patient and sometimes also unnecessary further tests such as prostate biopsies."

There are also several other tests that can be used to gather more information about the prostate and the urinary tract. Digital rectal examination (DRE) may allow a doctor to detect prostate abnormalities. Cystoscopy shows the urinary tract from inside the bladder, using a thin, flexible camera tube inserted down the urethra. Transrectal ultrasonography creates a picture of the prostate using sound waves from a probe in the rectum.

If cancer is suspected, a biopsy is offered expediently. During a biopsy a urologist or radiologist obtains tissue samples from the prostate via the rectum. A biopsy gun inserts and removes special hollow-core needles (usually three to six on each side of the prostate) in less than a second. Prostate biopsies are routinely done on an outpatient basis and rarely require hospitalization. Fifty-five percent of men report discomfort during prostate biopsy.

Gleason score

Gleason score

The tissue samples are then examined under a microscope to determine whether cancer cells are present, and to evaluate the microscopic features (or Gleason score) of any cancer found. Prostate specific membrane antigen is a transmembrane carboxypeptidase and exhibits folate hydrolase activity. This protein is overexpressed in prostate cancer tissues and is associated with a higher Gleason score.

Tumor markers

Tissue samples can be stained for the presence of PSA and other tumor markers in order to determine the origin of malignant cells that have metastasized.

Small cell carcinoma is a very rare (1%) type of prostate cancer that cannot be diagnosed using the PSA. As of 2009 researchers are trying to determine the best way to screen for this type of prostate cancer because it is a relatively unknown and rare type of prostate cancer but very serious and quick to spread to other parts of the body. Possible methods include chromatographic separation methods by mass spectrometry, or protein capturing by immunoassays or immunized antibodies. The test method will involve quantifying the amount of the biomarker PCI, with reference to the Gleason Score. Not only is this test quick, it is also sensitive. It can detect patients in the diagnostic grey zone, particularly those with a serum free to total Prostate Specific Antigen ratio of 10-20%.

The oncoprotein BCL-2, has been associated with the development of androgen-independent prostate cancer due to its high levels of expression in androgen-independent tumours in advanced stages of the pathology. The upregulation of BCL-2 after androgen ablation in prostate carcinoma cell lines and in a castrated-male rat model further established a connection between BCL-2 expression and prostate cancer progression.

The expression of Ki-67 by immunohistochemistry may be a significant predictor of patient outcome for men with prostate cancer.

ERK5 is a protein that may be used as a marker. ERK5 is present in abnormally high levels of prostate cancer, including invasive cancer which has spread to other parts of the body. It is also present in relapsed cancer following previous hormone therapy. Research shows that reducing the amount of ERK5 found in cancerous cells reduces their invasiveness.

Screening

Prostate cancer screening is an attempt to find unsuspected cancers, and may lead to more specific follow-up tests such as a biopsy, with cell samples taken for closer study. Options include the digital rectal exam (DRE) and the prostate-specific antigen (PSA) blood test. A 2010 analysis concluded that routine screening with either a DRE or PSA is not supported by the evidence as there is no mortality benefit from screening. More recently, the United States Preventive Services Task Force (USPSTF) recommended against the PSA test for prostate cancer screening in healthy men. This USPSTF recommendation, released in October 2011, is based on "review of evidence" studies concluding that "Prostate-specific antigen–based screening results in small or no reduction in prostate cancer–specific mortality and is associated with harms related to subsequent evaluation and treatments, some of which may be unnecessary."

Modern screening tests have found cancers that might never have developed into serious disease, and that "the slight reduction of risk by surgically removing the prostate or treating it with radiation may not outweigh the substantial side effects of these treatments," an opinion also shared by the CDC.

Prevention

There is a significant relation between lifestyle (including food consumption) and cancer prevention. Exercise and diet may help prevent prostate cancer to the same extent as may medications such as alpha-blockers and 5-alpha-reductase inhibitors.

Medications

Two medications which block the conversion of testosterone to dihydrotestosterone, finasteride and dutasteride, have also shown some promise. The use of these medications for primary prevention is still in the testing phase, and they are not widely used for this purpose. A 2008 study found that finasteride reduces the incidence of prostate cancer by 30%, without any increase in the risk of High-Grade prostate cancer. In the original study it turns out that the smaller prostate caused by finasteride means that a doctor is more likely to hit upon cancer nests and more likely to find aggressive-looking cells.

Compared to placebo treatment, taking 5-alpha-reductase inhibitors (5-ARIs) can reduce a man’s risk of being diagnosed with prostate cancer from around 5–9% to around 4-6% during up to 7 years of treatment, according to a Cochrane Review of studies.

Ejaculation frequency

More frequent ejaculation also may decrease a man's risk of prostate cancer. One study showed that men who ejaculated 3-5 times a week at the age of 15-19 had a decreased rate of prostate cancer when they are old, though other studies have shown no benefit. The results contradict those of previous studies, that suggested that having many sexual partners, or a high frequency of sexual activity, increases the risk of prostate cancer by up to 40 percent. A key difference may be that these earlier studies defined sexual activity as sexual intercourse, whereas this study focused on the number of ejaculations, whether or not intercourse was involved. Another study completed in 2004 reported that "Most categories of ejaculation frequency were unrelated to risk of prostate cancer. However, high ejaculation frequency was related to decreased risk of total prostate cancer." The report abstract concluded, "Our results suggest that ejaculation frequency is not related to increased risk of prostate cancer."

Diet

Consuming fish appears to lower prostate cancer deaths but not the occurrence of prostate cancer. Omega-3 fatty acids are unlikely to prevent prostate cancer. There is no evidence that vitamin supplements affect risk. Trans fats may be associated with an increased risk of cancer but the evidence is still limited. The American Dietetic Association and Dieticians of Canada report a decreased incidence of prostate cancer for those following a vegetarian diet.

Management of prostate cancer

Treatment for prostate cancer may involve active surveillance (monitoring for tumor progress or symptoms), surgery (i.e. radical prostatectomy), radiation therapy including brachytherapy (prostate brachytherapy) and external beam radiation therapy, High-intensity focused ultrasound (HIFU), chemotherapy, oral chemotherapeutic drugs (Temozolomide/TMZ), cryosurgery, hormonal therapy, or some combination. William J. Catalona, MD: regarding Active Surveillance, "Watchful Waiting or for some patients, Wishful Waiting: Can delay prompt treatment of life-threatening tumors, it would require repeated biopsies that often make subsequent nerve-sparing surgery more difficult and it causes many patients anxiety about living with untreated cancer, thus diminishing their quality of life." These men may have already been chemically castrated and impotent.

Which option is best depends on the stage of the disease, the Gleason score, and the PSA level. Other important factors are age, general health, and patient views about potential treatments and their possible side-effects. Because all treatments can have significant side-effects, such as erectile dysfunction and urinary incontinence, treatment discussions often focus on balancing the goals of therapy with the risks of lifestyle alterations. Prostate cancer patients are strongly recommended to work closely with their physicians and use a combination of the treatment options when managing their prostate cancer.

Because of PSA screening, almost 90% of patients are diagnosed when the cancer is localized to the prostate gland and its removal by surgery or radiotherapy will in most cases lead to a cure. Because of this almost 94% of U.S. patients choose treatment. However, in 50% to 75% of these patients the cancer would not have affected their survival even without treatment, and by accepting treatment they have a high chance of sexual, urinary, and bowel side effects. For instance, two-thirds of treated patients cannot get sufficient erections for intercourse, and almost a third have urinary leakage. However, some cancers will grow faster and prostate cancer is the second most common reason of cancer death in U.S. men, after lung cancer. Even the most intelligent and educated patient faces this uncertainty, and 1 in 6 men will be diagnosed with prostate cancer in their life time. The National Comprehensive Cancer Network (NCCN) offers annually updated and the most evidence-based guidelines for prostate cancer, as for all cancers, that can help newly-diagnosed and established patients to choose the best option for their specific clinical situation. For prostate cancer the NCCN guideline has been rated the most highly. However, all guidelines including the NCCN guideline need a good estimation of the patient's long-term health-adjusted life expectancy, because this factor is the most important determinant of survival in newly diagnosed patients. Primary care physicians and urologists find it hard to make this estimate - which might be the reason why guidelines are not used even though the treatment choice is so complex. An easy and evidence-based approach to decision-making has been published in the August 15, 2011 issue of the American Family Physician, the most commonly read journal in primary care. The authors have shown how to estimate health-adjusted life expectancy and have simplified NCCN guidelines so that patients can have a roadmap to reach the decision recommended for their clinical situation from where they can use personal preferences based on side-effect profiles of different treatment options. Patients can use a newly-developed 18-item questionnaire to find if they have good knowledge and understanding about treatment options before they choose an option; over half of 184 surveyed patients who had been newly-diagnosed and had already met with their urologist after the diagnosis and had chosen a treatment option could not correctly answer over half of questions even though 90% patients had good health literacy and over 60% were college-educated. The authors have also provided a one-page patient information handout.

Although the widespread use of prostate specific antigen (PSA) screening in the USA has resulted in diagnosis at earlier age and cancer stage, the vast majority of cases are still diagnosed in men older than 65 years, and approximately 25% of cases are diagnosed in men older than 75 years. Though US National Comprehensive Cancer Network guidelines recommend using life expectancy greater than or less than 10 years to help make treatment decisions, in practice, many elderly patients are not offered curative treatment options such as radical prostatectomy (RP) or radiation therapy and are instead treated with hormonal therapy or watchful waiting. This pattern can be attributed to factors such as medical co-morbidity and patient preferences is regard to quality of life in addition to prostate cancer specific risk factors such as pretreatment PSA, Gleason score and clinical stage. As the average life expectancy increases due to advances in treatment of cardiovascular, pulmonary and other chronic disease, it is likely that more elderly patients will be living long enough to suffer the consequences of their prostate cancer. Therefore, there is currently much interest in the role of aggressive prostate cancer treatment modalities such as with surgery or radiation in the elderly population who have localized disease. The results of one randomized controlled trial published by the Scandinavian Prostate Cancer Group 4 evaluated cancer-specific mortality in patients treated with RP compared with watchful waiting. The patients receiving radical prostatectomy had a relative risk reduction of 30.7% [95% confidence interval 2.5%-50.7%], but an absolute risk reduction of 6% [95% confidence interval 0.5%-11.5%]. The number needed to treat was calculated to be 16. This means that, over the median follow up period of approximately 10 years, 16 patients with localized prostate cancer would need to receive radical prostatectomy rather than watchful waiting in order to prevent one death due to prostate cancer. Further subset analysis revealed that this benefit did not apply to all ages equally. In men younger than 65 years, patients randomized to receive radical prostatectomy actually had a 10-18% absolute risk reduction in cancer-specific mortality compared to those randomized to watchful waiting. However, in men older than 65, there was no statistically significant risk reduction even when adjusted for PSA level, Gleason score and tumor stage. Randomized, controlled trials comparing radical prostatectomy, radiation therapy, hormonal therapy and watchful waiting would provide the best evidence for how to best treat elderly patients. Such trials are urgently needed, as the elderly population is rapidly growing and is expected to continue to do so. Study results in 2011 suggest active surveillance is the best choice for older 'low-risk' patients.

The selection of treatment options may be a complex decision involving many factors. For example, radical prostatectomy after primary radiation failure is a very technically challenging surgery and may not be an option, while salvage radiation therapy after surgical failure may have many complications. This may enter into the treatment decision.

If the cancer has spread beyond the prostate, treatment options significantly change, so most doctors that treat prostate cancer use a variety of nomograms to predict the probability of spread. Treatment by watchful waiting/active surveillance, external beam radiation therapy, brachytherapy, cryosurgery, HIFU, and surgery are, in general, offered to men whose cancer remains within the prostate. Hormonal therapy and chemotherapy are often reserved for disease that has spread beyond the prostate. However, there are exceptions: radiation therapy may be used for some advanced tumors, and hormonal therapy is used for some early stage tumors. Cryotherapy (the process of freezing the tumor), hormonal therapy, and chemotherapy may also be offered if initial treatment fails and the cancer progresses.

Castration-resistant prostate cancer

Most hormone dependent cancers become refractory after one to three years and resume growth despite hormone therapy. Previously considered "hormone-refractory prostate cancer" or "androgen-independent prostate cancer", the term castration-resistant has replaced "hormone refractory" because while they are no longer responsive to castration treatment (reduction of available androgen/testosterone/DHT by chemical or surgical means), these cancers still show reliance upon hormones for androgen receptor activation. Before 2004, all treatments for castration-resistant prostate cancer (CRPC) were considered palliative and not shown to prolong survival. However, there are now several treatments available to treat CRPC that improve survival.

The cancer chemotherapic docetaxel has been used as treatment for (CRPC) with a median survival benefit of 2 to 3 months. Docetaxel's FDA approval in 2004 was significant as it was the first treatment proven to prolong survival in CRPC. In 2010, the FDA approved a second-line chemotherapy treatment known as cabazitaxel.

Off-label use of the oral drug ketoconazole is sometimes used as a way to further manipulate hormones with a therapeutic effect in CRPC. However, many side effects are possible with this drug and abiraterone is likely to supplant usage since it has a similar mechanism of action with less toxic side effects.

A combination of bevacizumab (Avastin), docetaxel, thalidomide and prednisone appears effective in the treatment of CRPC.

The immunotherapy treatment with sipuleucel-T is also effective in the treatment of CRPC with a median survival benefit of 4.1 months.

The second line hormonal therapy abiraterone (Zytiga) completed a phase 3 trial for CRPC patients who have failed chemotherapy in 2010. Results were positive with overall survival increased by 4.6 months when compared to placebo. On April 28, 2011, the U.S. Food and Drug Administration approved abiraterone acetate in combination with prednisone to treat patients with late-stage (metastatic) castration-resistant prostate cancer who have received prior docetaxel (chemotherapy).

Alpharadin completed a phase 3 trial for CRPC patients with bone metastasis. A pre-planned interim analysis showed improved survival and quality of life. The study was stopped for ethical reasons to give the placebo group the same treatment. Apharadin uses bone targeted Radium-223 isotopes to kill cancer cells by alpha radiation. Alpharadin is an investigational agent and is not approved for marketing by the European Medicines Agency (EMA), the U.S. Food and Drug Administration (FDA), or any other health authorities.

There are also several treatments currently in clinical trials to treat CRPC. These include the 2nd generation hormonal therapies MDV3100 and orteronel (TAK-700), the immunotherapy PROSTVAC, and the bone metastasis-targeting cabozantinib (XL-184).

Prognosis

Prostate cancer rates are higher and prognosis poorer in developed countries than the rest of the world. Many of the risk factors for prostate cancer are more prevalent in the developed world, including longer life expectancy and diets high in red meat. (People who consume larger amounts of meat and dairy also tend to consume fewer portions of fruits and vegetables. It is not currently clear whether both of these factors, or just one of them, contribute to the occurrence of prostate cancer.) Also, where there is more access to screening programs, there is a higher detection rate. Prostate cancer is the ninth-most-common cancer in the world, but is the number-one non-skin cancer in men from the United States. Prostate cancer affected eighteen percent of American men and caused death in three percent in 2005. In Japan, death from prostate cancer was one-fifth to one-half the rates in the United States and Europe in the 1990s. In India in the 1990s, half of the people with prostate cancer confined to the prostate died within ten years. African-American men have 50–60 times more prostate cancer and prostate cancer deaths than men in Shanghai, China. In Nigeria, two percent of men develop prostate cancer, and 64% of them are dead after two years.

In patients who undergo treatment, the most important clinical prognostic indicators of disease outcome are stage, pre-therapy PSA level, and Gleason score. In general, the higher the grade and the stage, the poorer the prognosis. Nomograms can be used to calculate the estimated risk of the individual patient. The predictions are based on the experience of large groups of patients suffering from cancers at various stages.

In 1941, Charles Huggins reported that androgen ablation therapy causes regression of primary and metastatic androgen-dependent prostate cancer. He was awarded the 1966 Nobel Prize for Physiology or Medicine for this discovery. Androgen ablation therapy causes remission in 80-90% of patients undergoing therapy, resulting in a median progression-free survival of 12 to 33 months. After remission, an androgen-independent phenotype typically emerges, wherein the median overall survival is 23–37 months from the time of initiation of androgen ablation therapy. The actual mechanism contributes to the progression of prostate cancer is not clear and may vary between individual patient. A few possible mechanisms have been proposed.

Classification systems

Many prostate cancers are not destined to be lethal, and most men will ultimately die from causes other than of the disease. Decisions about treatment type and timing may, therefore, be informed by an estimation of the risk that the tumor will ultimately recur after treatment and/or progress to metastases and mortality. Several tools are available to help predict outcomes, such as pathologic stage and recurrence after surgery or radiation therapy. Most combine stage, grade, and PSA level, and some also add the number or percent of biopsy cores positive, age, and/or other information.

The D'Amico classification stratifies men by low, intermediate, or high risk based on stage, grade, and PSA. It is used widely in clinical practice and research settings. The major downside to the 3-level system is that it does not account for multiple adverse parameters (e.g., high Gleason score and high PSA) in stratifying patients.

The Partin tables predict pathologic outcomes (margin status, extraprostatic extension, and seminal vesicle invasion) based on the same three variables and are published as lookup tables.

The Kattan nomograms predict recurrence after surgery and/or radiation therapy, based on data available either at time of diagnosis or after surgery. The nomograms can be calculated using paper graphs or software available on a website or for handheld computers. The Kattan score represents the likelihood of remaining free of disease at a given time interval following treatment.

The UCSF Cancer of the Prostate Risk Assessment (CAPRA) score predicts both pathologic status and recurrence after surgery. It offers comparable accuracy as the Kattan preoperative nomogram, and can be calculated without paper tables or a calculator. Points are assigned based on PSA, Grade, stage, age, and percent of cores positive; the sum yields a 0–10 score, with every 2 points representing roughly a doubling of risk of recurrence. The CAPRA score was derived from community-based data in the CaPSURE database. It has been validated among over 10,000 prostatectomy patients, including patients from CaPSURE; the SEARCH registry, representing data from several Veterans Administration and active military medical centers; a multi-institutional cohort in Germany; and the prostatectomy cohort at Johns Hopkins University. More recently, it has been shown to predict metastasis and mortality following prostatectomy, radiation therapy, watchful waiting, or androgen deprivation therapy.

History

Although the prostate was first described by Venetian anatomist Niccolò Massa in 1536, and illustrated by Flemish anatomist Andreas Vesalius in 1538, prostate cancer was not identified until 1853. Prostate cancer was initially considered a rare disease, probably because of shorter life expectancies and poorer detection methods in the 19th century. The first treatments of prostate cancer were surgeries to relieve urinary obstruction. Removal of the entire gland (radical perineal prostatectomy) was first performed in 1904 by Hugh H. Young at Johns Hopkins Hospital. Surgical removal of the testes (orchiectomy) to treat prostate cancer was first performed in the 1890s, but with limited success. Transurethral resection of the prostate (TURP) replaced radical prostatectomy for symptomatic relief of obstruction in the middle of the 20th century because it could better preserve penile erectile function. Radical retropubic prostatectomy was developed in 1983 by Patrick Walsh. This surgical approach allowed for removal of the prostate and lymph nodes with maintenance of penile function.

In 1941, Charles B. Huggins published studies in which he used estrogen to oppose testosterone production in men with metastatic prostate cancer. This discovery of "chemical castration" won Huggins the 1966 Nobel Prize in Physiology or Medicine. The role of the hormone GnRH in reproduction was determined by Andrzej W. Schally and Roger Guillemin, who both won the 1977 Nobel Prize in Physiology or Medicine for this work.

Receptor agonists, such as leuprolide and goserelin, were subsequently developed and used to treat prostate cancer.

Radiation therapy for prostate cancer was first developed in the early 20th century and initially consisted of intraprostatic radium implants. External beam radiation became more popular as stronger radiation sources became available in the middle of the 20th century. Brachytherapy with implanted seeds was first described in 1983.

Systemic chemotherapy for prostate cancer was first studied in the 1970s. The initial regimen of cyclophosphamide and 5-fluorouracil was quickly joined by multiple regimens using a host of other systemic chemotherapy drugs.

On 30 July 2010 Owen Witte M.D. et al. of UCLA published a series of studies in Science during which they had introduced viruses known to cause cancerous mutation in prostate cells: AKT, ERG, and AR into isolated samples of basal and luminal cells and grafted the treated tissue into mice. After 16 weeks, none of the luminal samples had undergone malignant mutation, while the basal samples had mutated into prostate-like tubules which had then developed malignancy and formed cancerous tumors, which appeared identical to human samples under magnification. This led to the conclusion that the prostate basal cell may be the most likely "site of origin" of prostate cancer.

Society and culture

Discrimination

People with prostate cancer generally encounter significant disparities in awareness, funding, media coverage, and research—and therefore, inferior treatment and poorer outcomes—compared to other cancers of equal prevalence. In 2001 The Guardian noted that Britain had 3,000 nurses specializing in breast cancer, compared to only one for prostate cancer. It also discovered that the waiting time between referral and diagnosis was two weeks for breast cancer but three months for prostate cancer. A 2007 report by The National Prostate Cancer Coalition stated that for every prostate cancer drug on the market, there were seven used to treat breast cancer. The Times also noted an "anti-male bias in cancer funding" with a four to one discrepancy in the United Kingdom by both the government and by cancer charities such as Cancer Research UK. Equality campaigners such as author Warren Farrell cite such stark spending inequalities as a clear example of governments unfairly favouring women's health over men's health.

Disparities also extend into areas such as detection, with governments failing to fund or mandate prostate cancer screening while fully supporting breast cancer programs. For example, a 2007 report found 49 U.S. states mandate insurance coverage for routine breast cancer screening, compared to 28 for prostate cancer. Prostate cancer also experiences significantly less media coverage than other, equally prevalent cancers, with a study by Prostate Coalition showing 2.6 breast cancer stories for each one covering cancer of the prostate.

Prostate cancer awareness month

Prostate cancer awareness month takes place in September in a number of countries. A blue ribbon is used to promote the cause.

Research

Androgen at a concentration of 10-fold higher than the physiological concentration has also been shown to cause growth suppression and reversion of androgen-independent prostate cancer xenografts or androgen-independent prostate tumors derived in vivo model to an androgen-stimulated phenotype in athymic mice. These observation suggest the possibility to use androgen to treat the development of relapsed androgen-independent prostate tumors in patients.

Oral infusion of green tea catechins, a potential alternative therapy for prostate cancer by natural compounds, has been shown to inhibit the development, progression, and metastasis as well in autochthonous transgenic adenocarcinoma of the mouse prostate (TRAMP) model, which spontaneously develops prostate cancer.

The insulin-like growth factor signaling axis is thought to play a key role in the progression of prostate carcinoma. It consists of two ligands (IGF-1 and IGF-2), two receptors (IGF-IR and IGF-IIR) and six related high-affinity IGF-binding proteins (IGFBP 1-6). Altered expression of IGF axis members has been implicated in the development of many different types of cancers, including prostate.

A genistein derivative KBU2046 is under investigation for prostate cancer. MDV3100 is in phase III trials for HRPC (chemo-naive and post-chemo patient populations).

Prostate cancer models

Scientists have established a few prostate cancer cell lines to investigate the mechanism involved in the progression of prostate cancer. LNCaP, PC-3 (PC3), and DU-145 (DU145) are commonly used prostate cancer cell lines. The LNCaP cancer cell line was established from a human lymph node metastatic lesion of prostatic adenocarcinoma. PC-3 and DU-145 cells were established from human prostatic adenocarcinoma metastatic to bone and to brain, respectively. LNCaP cells express androgen receptor (AR); however, PC-3 and DU-145 cells express very little or no AR. AR, an androgen-activated transcription factor, belongs to the steroid nuclear receptor family. Development of the prostate is dependent on androgen signaling mediated through AR, and AR is also important during the development of prostate cancer. The proliferation of LNCaP cells is androgen-dependent but the proliferation of PC-3 and DU-145 cells is androgen-insensitive. Elevation of AR expression is often observed in advanced prostate tumors in patients. Some androgen-independent LNCaP sublines have been developed from the ATCC androgen-dependent LNCaP cells after androgen deprivation for study of prostate cancer progression. These androgen-independent LNCaP cells have elevated AR expression and express prostate specific antigen upon androgen treatment. The paradox is that androgens inhibit the proliferation of these androgen-independent prostate cancer cells.

Diagnosis

At present, an active area of research involves non-invasive methods of prostate tumor detection. Adenoviruses modified to transfect tumor cells with harmless yet distinct genes (such as luciferase) have proven capable of early detection. So far, however, this area of research has been tested only in animal and LNCaP cell models.

EN2

Presence of the EN2 (gene) in urine has been correlated to a high probability of prostate cancer. Co-researchers Hardev Pandha, and Richard Morgan published their findings in the 1 March 2011 issue of the journal Clinical Cancer Research. A laboratory test currently identifies EN2 in urine, and a home test kit is envisioned similar to a home pregnancy test strip. According to Morgan, "We are preparing several large studies in the UK and in the US and although the EN2 test is not yet available, several companies have expressed interest in taking it forward."

PCA3

Another potential non-invasive method of early prostate tumor detection is through a molecular test that detects the presence of cell-associated PCA3 mRNA in fluid massaged from the prostate by the doctor and first-void urinated out within a limited amount of urine into the specimen container. PCA3 mRNA is expressed almost exclusively by prostate cells and has been shown to be highly over-expressed in prostate cancer cells. The test result is currently reported as a specimen ratio of PCA3 mRNA to PSA mRNA. Although not a replacement for serum PSA level, the PCA3 test is an additional tool to help decide whether, in men suspected of having prostate cancer (especially if an initial biopsy fails to explain the elevated serum PSA), a biopsy/rebiopsy is really needed. The higher the expression of PCA3 in the sample, the greater the likelihood of a positive biopsy; i.e., the presence of cancer cells in the prostate.

Early prostate cancer antigen-2

It was reported in April 2007 that research is being conducted on a new blood test for early prostate cancer antigen-2 (EPCA-2) that may alert men if they have prostate cancer and how aggressive it will be.

Thrombophlebitis is associated with an increased risk of prostate cancer and may be a good way for physicians to remind themselves to screen patients with thrombophlebitis for prostate cancer as well since these two are closely linked.

Prostate mapping

Prostate mapping is a method of diagnosis that may be accurate in determining the precise location and aggressiveness of a tumor. It uses a combination of multi-sequence MRI imaging techniques and a template-guided biopsy system, and involves taking multiple biopsies through the skin that lies in front of the rectum rather than through the rectum itself. The procedure is carried out under general anesthetic.

Prostasomes

Epithelial cells of the prostate secrete prostasomes as well as PSA. Prostasomes are membrane–surrounded, prostate-derived organelles that appear extracellularly, and one of their physiological functions is to protect the sperm from attacks by the female immune system. Cancerous prostate cells continue to synthesize and secrete prostasomes, and may be shielded against immunological attacks by these prostasomes. Research of several aspects of prostasomal involvement in prostate cancer has been performed.